Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics
نویسندگان
چکیده
The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.
منابع مشابه
Poly (L-glutamic acid)-Paclitaxel Conjugates for Cancer Treatment
One of the effective approaches to develop new anticancer drugs is to prepare polymeranticancer drug conjugates. The polymer-anticancer drug conjugates include polymerprotein conjugates, polymer-drug conjugates and supramolecular drug-delivery systems. In 1975, the concept of a polymer-drug conjugate was first proposed by Ringsdorf (Ringsdorf, 1975). In his model, a bioactive anticancer agent w...
متن کاملPaclitaxel chemotherapy: from empiricism to a mechanism-based formulation strategy
Paclitaxel is an anticancer agent effective for the treatment of breast, ovarian, lung, and head and neck cancer. Because of water insolubility, paclitaxel is formulated with the micelle-forming vehicle Cremophor EL to enhance drug solubility. However, the addition of Cremophor EL results in hypersensitivity reactions, neurotoxicity, and altered pharmacokinetics of paclitaxel. To circumvent the...
متن کاملDividing phase-dependent cytotoxicity profiling of human embryonic lung fibroblast identifies candidate anticancer reagents.
Human Embryonic Lung fibroblasts (HEL cells) are widely used as a normal cell in studies of cell biology and can be easily maintained in the resting phase. Here we aimed to discover compounds that exhibit cytotoxicity against HEL cells in the dividing phase, but not in the resting phase. The cytotoxicity of each compound against HEL cells either in the resting phase or in the dividing phase was...
متن کاملA Comparison between the Anticancer Activities of Free Paclitaxel and Paclitaxel-Loaded Niosome Nanoparticles on Human Acute Lymphoblastic Leukemia Cell Line Nalm-6
Background: Niosomes or Nonionic surfactant vesicles are nano vehicles utilized in drug delivery systems, especially in cancer therapy. In this study, these vesicles were applied as delivery system for anticancer drug, paclitaxel and then, its anticancer activities was compared with free paclitaxel on Human Acute Lymphoblastic Leukemia (ALL) cell line Nalm-6. Materialas and Methods: In this exp...
متن کاملPaclitaxel–albumin interaction in view of molecular engineering of polymer–drug conjugates*
The interaction of water-soluble polymer conjugates of the anticancer agent paclitaxel and albumin as model protein has been investigated using fluorescence spectroscopy and NMR. Drugs and drug conjugates can enter the hydrophobic core of albumin; the kinetics of the interaction with the fluorophore, however, differs. Given the information about the steric situation of the formed complexes, som...
متن کامل